Activation of the tumor suppressor merlin modulates its interaction with lipid rafts.
نویسندگان
چکیده
Neurofibromatosis type 2 (NF2) is a genetic disorder characterized by bilateral schwannomas of the eighth cranial nerve. The NF2 tumor suppressor protein, merlin, is related to the ERM (ezrin, radixin, and moesin) family of membrane/F-actin linkers. Merlin resists solubilization by the detergent Triton X-100 (TX-100), a property commonly attributed to association with the cytoskeleton. Accordingly, NF2 patient mutations that encode merlins with enhanced TX-100 solubility have been explained previously in terms of loss of cytoskeletal attachment. However, here we present data to suggest that the detergent resistance of merlin is a result of its constitutive residence in lipid rafts. Furthermore, when cells are grown to high density, merlin shifts to a more buoyant lipid raft fraction in a density gradient. This shift is mimicked in subconfluent cells treated with cytochalasin D, suggesting that the shift results from merlin dissociation from the actin cytoskeleton, but not from lipid rafts. Intramolecular NH(2)- and COOH-terminal binding, which occurs when merlin transitions to the growth-suppressive form, also brings about a similar change in buoyant density. Our results suggest that constitutive residence of merlin in lipid rafts is crucial for its function and that as merlin becomes growth suppressive in vivo, one significant molecular event may be the loss of interaction with the actin cytoskeleton. To our knowledge, merlin is the first tumor suppressor known to reside within lipid rafts, and the significance of this finding is underscored by known loss-of-function NF2 patient mutations that encode merlins with enhanced TX-100 solubility.
منابع مشابه
The tumor suppressor merlin interacts with microtubules and modulates Schwann cell microtubule cytoskeleton.
The lack of neurofibromatosis 2 tumor suppressor protein merlin leads to the formation of nervous system tumors, specifically schwannomas and meningiomas. Merlin is considered to act as a tumor suppressor at the cell membrane, where it links transmembrane receptors to the actin cytoskeleton. Several tumor suppressors interact with another component of the cytoskeleton, the microtubules, in a re...
متن کاملAssociation of PepT1 with lipid rafts differently modulates its transport activity in polarized and nonpolarized cells.
The transporter PepT1, apically expressed in intestinal epithelial cells, is responsible for the uptake of di/tripeptides. PepT1 is also expressed in nonpolarized immune cells. Here we investigated the localization of PepT1 in lipid rafts in small intestinal brush border membranes (BBMs) and polarized and nonpolarized cells, as well as functional consequences of the association of PepT1 with li...
متن کاملThe dependence receptor DCC requires lipid raft localization for cell death signaling.
DCC (deleted in colorectal cancer) is a putative tumor suppressor gene whose expression is lost in numerous cancers. DCC also encodes the main receptor for the neuronal navigation cue netrin-1. It has been shown that DCC belongs to the so-called family of dependence receptors. Such receptors induce apoptosis when their ligand is absent, thus conferring a state of cellular dependence on ligand a...
متن کاملLocalization of Fas/CD95 into the lipid rafts on down-modulation of the phosphatidylinositol 3-kinase signaling pathway.
Activation of the phosphatidylinositol 3-kinase (PI3K) signaling pathway is known to protect tumor cells from apoptosis and more specifically from the Fas-mediated apoptotic signal. The antitumoral agent edelfosine sensitizes leukemic cells to death by inducing the redistribution of the apoptotic receptor Fas into plasma membrane subdomains called lipid rafts. Herein, we show that inhibition of...
متن کاملFunctional analysis of the relationship between the neurofibromatosis 2 tumor suppressor and its binding partner, hepatocyte growth factor-regulated tyrosine kinase substrate.
Individuals with the neurofibromatosis 2 (NF2) inherited tumor predisposition syndrome are prone to the development of nervous system tumors, including schwannomas and meningiomas. The NF2 tumor suppressor protein, merlin or schwannomin, inhibits cell growth and motility as well as affects actin cytoskeleton-mediated processes. Merlin interacts with several proteins that might mediate merlin gr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cancer research
دوره 64 8 شماره
صفحات -
تاریخ انتشار 2004